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Abstract

We present results for the spherical harmonics (P n) method for solving problems of time-dependent thermal radiative
transport. We prove a theorem that demonstrates that in the streaming limit, the spatially and temporally continuous P n

equations will allow negative energy densities for any finite order of n. We also develop an implicit numerical method for
solving the P n equations to explore the impact of the theorem. The numerical method uses a high-resolution Riemann sol-
ver to produce an upwinded discretization. We employ a quasi-linear approach to integrate the nonlinearites added to
make the scheme non-oscillatory. We use the backward Euler method for time integration and treat the material interac-
tion terms fully nonlinearly. Reflecting boundary conditions for the P n equations are presented and we show how to imple-
ment this boundary condition using ghost cells. The implicit method was able to produce robust results to thermal
transport problems in one and two dimensions. The numerical method is used to analyze the accuracy of various P n expan-
sion orders on several problems. In two-dimensional problems the numerical P n solutions contained negative radiation
energy densities as predicted by our theorem. The numerical results showed that the material temperature also became neg-
ative, a result outside the scope of the theorem. Our numerical method can handle these negative values, but they would
cause problems in a radiation-hydrodynamics calculation.
Published by Elsevier Inc.

Keywords: Thermal radiation transport; P n approximation; Nonlinear solver; Implicit time integration
1. Introduction

The numerical solution of the equations that govern the physics of thermal radiation transport is a difficult
task due at least in part to the number of independent variables in the system and the nonlinear evolution of
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the material temperature. The field of deterministic transport of X-rays has mostly centered around discrete
ordinates (Sn) and flux-limited diffusion (FLD) methods. The Sn method solves the transport equation along
particular directions and uses a quadrature rule to determine the energy density at a given point. The solutions
given by this method can have spatial oscillations in the energy density known as ray effects [1,2]. These effects
are especially prominent when photons stream from a localized and isotropic source across an optically thin
medium. In a simulation where the radiation transport is coupled to hydrodynamics of the background mate-
rial these ray effects can lead to hot spots in the material and the material can consequently evolve incorrectly.
FLD allows photons to non-physically diffuse around optically thick objects. In a radiation-hydrodynamics
simulation this could also lead to the incorrect evolution of the system. For example if X-rays were shined
on one face of a block of metal, FLD would allow the back of the block to be heated. This would make
the radiative heating of the block more uniform that it would actually be.

Another deterministic method that could be applied to problems of radiative transfer is the spherical har-
monics (P n) method. This approach uses a truncated expansion of the angular variables to arrive at a finite
hyperbolic system. In one dimension this method is equivalent to the Sn method using Gaussian quadrature;
however, in multiple dimensions the two methods are different. P n does not have ray effects in multiple dimen-
sions, yet, the spatially and temporally continuous P n equations can have negative energy density solutions in
time-dependent problems. This unphysical result is a part of the reason the P n method has been marginalized
for thermal radiative transport.

Though it is well known that in time-dependent problems the P n method can give negative solutions for the
radiation energy density (see, for example, McClarren et al. [3] or Brunner and Holloway [4]), no study of the
origin and behavior of the negative parts of the solution has been undertaken. In this study we present a
theorem stating that the P n equations can give negative results for any order of n except in slab geometry.
The theorem hinges on the fact that the P n equations are linear, hyperbolic, and rotationally invariant. We
then develop a numerical scheme to show how the P n equations behave in thermal radiative transfer problems.
This allows us to explore how the magnitude of the negative parts of the solution behaves as the order of the
expansion is changed. Moreover, we will explore how negative solutions for the radiation energy density
impact the material temperature.

Discrete ordinates methods of solving the transport equation have the benefit of a rich body of research on
their defects and on efficient solution techniques; their very success has contributed to the relative neglect of
the P n method. Of late there has been somewhat of a risorgimento of the P n method for time-dependent prob-
lems. Brunner and Holloway developed robust methods for solving linear transport problems with spherical
harmonics [4,5]. This work was based on the use of a high-resolution upwind method using explicit time inte-
gration. Their spatial discretization was a finite-volume Riemann solver using van Leer’s limiter to achieve
better than first-order accuracy. The success of this method goaded us to develop an implicit upwind scheme
for P n [6,7]. To have a high-resolution, implicit method it is necessary to solve a nonlinear system of equations
at each time step. Using the minmod limiter, we were able to efficiently and accurately solve these nonlinear
equations by a quasi-linear method that required solving two linear systems.

The numerical method in this paper is an extension of the quasi-linear implicit scheme [6] to thermal radi-
ative transfer problems with a participating background medium. Our work represents the first use of an
implicit Riemann method for thermal radiation transport. This scheme will be modified to solve the thermal
transport system in a fully coupled manner. Using this scheme we are able to take time steps large compared to
the radiation propagation time scale and on the order of the time scale of the material energy.

We will also show how to implement reflecting boundary conditions in a finite-volume P n method. Previ-
ously, Brunner and Holloway explored different types of boundary conditions [5]. Of all the boundary condi-
tions they examined, the Mark boundary condition implemented using ghost cells had the best combination of
ease of implementation and accuracy. To use ghost cells, a cell is placed outside the physical system with the P n

moments specified. The Riemann solver appropriately moves only the incoming part of those moments into
the system. We will use this type of implementation to specify a reflecting boundary.

We use our method to solve several problems in one and two dimensions. These problems range from sim-
ple problems with analytic solutions to 2D problems in complicated geometries. In one-dimensional problems
P n orders of seven or nine are able to capture many features of analytic transport solutions. The two-dimen-
sional test problems support the results of our theorem by giving negative energy densities. The negative
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energy densities persist even to high orders of n. These negative energy densities are worst at the interface of a
dark region and an illuminated one. The negative radiation energy densities in these problems cause the mate-
rial temperature to become negative as well.

2. Thermal radiative transfer Pn equations

The grey radiative transfer equation in the absence of scattering is [8]
1
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þ bX � rI ¼ r
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: ð1Þ
In this equation Ið~x; bX; tÞ is the radiation intensity, bX is the angular variable, r is opacity of the material with
units (cm�1); a is the radiation constant (1:372� 1013 J m�3 keV�4); c is the speed of light (3� 108 m s�1); Q is
a prescribed source that is angularly isotropic with units (J m�3 s�1); T is the background material tempera-
ture in keV. We note that r is a function of space, time and material temperature, however for convenience we
do not explicitly write this dependence. The equation that governs the material temperature (assuming a sta-
tionary background material) is
CvðT Þ
oT
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¼ r

Z
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I dbX � acT 4

� �
; ð2Þ
with Cv the heat capacity of the material in units (J cm�3/keV).
The P n method writes the angular dependence of Eq. (1) as a series expansion in spherical harmonics func-

tions. The P n equations we use are an extension to thermal radiative transfer of 2D equations written by Brun-
ner [4]. These equations are
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for l 2 ½0;1Þ and m 6¼ 0, jmj 6 l. The equation for I0
l is
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The moments of the specific intensity, Iðx; z; bX; tÞ, are defined by
Im
l ðx; z; tÞ ¼

Z
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where the spherical harmonics functions are
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with P m
l an associated Legendre function. The zeroth moment of the intensity can be related to the radiation

energy density by
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The constants in Eqs. (3) and (4) are
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Using our expansion, the material energy equation, Eq. (2), becomes
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: ð8Þ
Eqs. (3) and (4) are an infinite system of equations and we must truncate them for numerical computation; we
set Im

l ¼ 0 for l P n. We can write the P n radiative transfer system in a more compact form by defining a vec-
tor of the moments of the intensity,~I , and writing the coupling constants as a matrix
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where we have used the Kronecker-delta notation dl0dm0 to denote terms that appear in the l ¼ m ¼ 0
equation.

3. Free-streaming limit and negative solutions

The P n equations are rotationally invariant, linear, and hyperbolic. These properties of the P n approxima-
tion lead to negative solutions in the free-streaming limit. Below we prove a theorem that demonstrates this
point. We note that the theorem deals with the free-streaming limit, and therefore, it applies to any type of
neutral particle transport.

Theorem. Suppose that the discretized transport equation in the source-free, streaming limit is linear and of the
form
o~I
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o~I
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þ Ay

o~I
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þ Az
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oz
¼ 0;
where~I is a vector of dependent variables that represent the angular information (e.g. intensity moments in the

spherical harmonics expansion). Suppose further that this equation is linear, rotationally invariant, and hyper-

bolic. Then there exist positive, isotropic initial data in 2D and 3D for which the radiation energy density at sub-
sequent times becomes negative.

Proof. Let N þ 1 be the number of elements of the vector~I . For the sake of this proof we label the elements of
vector~I as I i, i ¼ 0; 1; 2; . . . ;N . Without loss of generality, we can assume that the radiation energy density is
proportional to one element of the vector~I , and in particular E ¼ kI0.

Consider an infinite system with the initial condition I0ðx; y; z; t ¼ 0Þ ¼ dðxÞdðyÞdðzÞ and all other angular
variables initially zero, I iðx; y; z; 0Þ ¼ 0, i P 1. Because of rotational invariance I0ðx; y; z; tÞ generated by this
initial data must be of the form I0ðr; tÞ where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
(note that this simple r dependance does not

hold for the higher angular moments). Denote the radiation energy density solution for this problem
Eptðr; tÞ ¼ kI0ðr; tÞ.

With this solution we can use linear superposition to construct the radiation energy density part of the
solution to any problem with initial data for the form I0ðx; y; z; 0Þ ¼ Gðx; y; zÞ and I iðx; y; z; 0Þ ¼ 0, using
Eðx; y; z; tÞ ¼
Z
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For the initial data Gðx; y; zÞ ¼ dðzÞ we have
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Differentiating this we have that
Eptðz; tÞ ¼ �
1

2pz
dEðz; tÞ

dz

				
z¼Dr

ð15Þ
and we can therefore compute Eptðr; tÞ from the slab geometry problem with initial data E0ðz; 0Þ ¼ dðzÞ.
Because the discrete equations are hyperbolic, by definition Az has distinct real eigenvalues and a complete

linearly independent set of eigenvectors. Let Q be the matrix that diagonalizes Az, so that K ¼ QAZQ�1 is a
diagonal matrix with real diagonal matrix elements ki. Consider then the slab geometry problem
o~I
ot
þ Az
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¼ 0 ð16Þ
with initial data
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Applying Q we have that
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and the ith component equation is
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where Q~I i denotes the ith component of Q~I . This shows that each characteristic variable satisfies a linear
advection equation with characteristic speed ki. The solution of these advection equations is
Q~I iðz; tÞ ¼ fiðz� kitÞ; ð20Þ

where fiðzÞ ¼ Q~I iðz; 0Þ is initial data. Because
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we have that fiðzÞ ¼ Qi;0dðzÞ and all the fi’s are delta distributions.
Transforming back to Iðz; tÞ we have the solution of the one-dimensional pulsed source problem as

~I ¼ Q�1Q~I and so
I iðz; tÞ ¼
XN

j¼0

½Q�1�i;jfjðz� kjtÞ ¼
XN

j¼0

½Q�1�i;jQj;0dðz� kjtÞ: ð22Þ
Therefore, the radiation energy density in Eq. (15) is of the form
Eðz; tÞ ¼ kI0ðz; tÞ ¼
XN

j¼0

ajdðz� kjtÞ: ð23Þ
where aj ¼ k½Q�1�0;jQj;0.
Because the discrete model is hyperbolic, the radiation energy density for this delta function initial

condition is simply a set of N delta functions traveling away from the origin at distinct speeds ki.
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Differentiating this we have that
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The distribution d0ðzÞ is not a positive distribution (for a positive function f the integral
R

d0ðzÞf ðzÞdr ¼ �f 0ð0Þ
need not be positive); it is this that will lead to negative solutions. With the intensity due to a point initial con-
dition in hand we can write the general solution for any initial condition as
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Setting the origin of a spherical coordinate system ðq; bXÞ at ðx; y; zÞ ¼ r we have ðx0; y0; z0Þ ¼ r0 ¼ rþ qbX and
we can write this integral as
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Evaluating this solution at r ¼ 0 we have
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This expression says that the solution at some point (the origin in this case), is given by a sum over the various
waves speeds kj, with each wave speed contributing an amount that depends on the integral over a sphere of
radius kjt. Note here that the integrand on the spherical surface of radius kjt depends on both the initial data
on that surface and also on the gradient of the initial data on that surface. The former contribution will always
be positive, but the latter contribution can be positive or negative. Because these two contributions can be of
arbitrary sign and magnitude, the net contribution to E can be negative, zero, or positive. Based on this, we
can easily construct initial data that will produce a negative scalar intensity at the origin.

Consider a rotationally invariant initial condition where G depends only on the magnitude of its argument;
the gradient of G is then radial with magnitude that will be denoted G0, and bX is also radial, so bX � rG ¼ G0.
Then
Eð0; tÞ ¼
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In this case the intensity at the origin at any fixed time depends simply on the value and the derivative of the
initial data at a finite set of distances from the origin.

Select now spherically symmetric initial data representing a thin ring of initial particles near radius 1,
specifically
GðrÞ ¼ 1� ðr�1Þ2
�2

; jr � 1j 6 �;

0; otherwise:

(
ð32Þ
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Now pick any one positive wave speed kk, and consider times near tk ¼ 1=kk, specifically t ¼ tk þ d where
d ¼ ��=2. For � sufficiently small only the wave speed kk will contribute, because GðkjtÞ ¼ Gðkj=kkþ
kjdÞ ¼ 0 for all other wavespeeds with j 6¼ k. Thus
Eð0; tk þ dÞ ¼ 2ak½G0ð1þ dkkÞ þ Gð1þ dkkÞ�; ð33Þ
¼ 2ak½�2dkk=�

2 þ ð1� ðdkkÞ2=�2Þ�; ð34Þ
¼ 2ak½1� kk=�� k2

k=4�: ð35Þ
For � sufficiently small we can make this either positive or negative, by selecting one of the signs for d ¼ ��=2.
Thus, no matter the sign of ak, we can construct an initial condition that will cause the scalar flux to become
negative in 3D.

To show that the 2D solution can become negative, we will integrate a point source over an infinite line
located at x ¼ y ¼ 0. Using Eq. (24), we get the 2D solution as
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the 2D solution becomes
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where HðxÞ is the Heaviside step function. This solution is negative for either sign of aj, hence the scalar flux
can become negative in 2D. h

The main consequence of this theorem is that for any order P n expansion, there exists a problem where that
approximation will give a negative radiation energy density. The theorem does not state how severe the mag-
nitude of the negative part of the solution will be, nor does it say anything about the behavior or existence of
negative energy density in problems with a background material. Also, the theorem does not state what order
of expansion we need to have a positive solution for a given problem of interest. These cases we will explore
with numerical results in the following sections.

The theorem does say what must be done to ‘‘fix” the P n method. There are four ingredients the theorem
relied on. The plane-to-point transform was valid because the P n equations are rotationally invariant and lin-
ear. The delta functions which led to negative solutions are a consequence of the hyperbolic structure of the P n

equations and our ability to isolate the contribution of each wave speed was a consequence of having a finite
number of degrees of freedom in the angular variables. This means that if we want to guarantee that the solu-
tion given by a P n method will be positive, we must give up one of these four properties: linearity, rotational
invariance, hyperbolicity, or finite angular resolution. Obviously, we cannot give up finite dimensionality if we
want to do computer simulations; so there are really only three possibilities. This is unfortunate because the
transport equation is linear, rotationally invariant and hyperbolic.
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Other methods satisfy this give-and-take in different ways. Diffusion methods give up hyperbolicity by
allowing information to travel infinitely fast. This eliminates the delta functions and gives diffusion positivity.
Discrete ordinates methods with Gaussian quadrature give the same delta function solutions in slab geometry
as P n methods. However, the discrete ordinates equations are not rotationally invariant so the transform in
Eq. (24) does not apply.3 This lack of rotational invariance leads to the ray effects seen in discrete ordinates
solutions [9]. This makes the choice of dropping the rotational invariance of the P n approach undesirable.

It would be possible to drop linearity through a nonlinear closure. The standard P n equations are closed by
assuming Im

nþ1 ¼ 0. A nonlinear closure would attempt to construct this moment using the other moments that
are known. One potentially promising closure is the Minerbo maximum entropy closure which determines the
unknown moment using physical arguments regarding the equilibriation of the intensity in angle [5,10]. It
should be noted that linear closures derived based on some assumed form for the intensity [11] will not resolve
the problem unless they give up hyperbolicity.

Another possible remedy could be to make a diffusion-like approximation in the highest moments in the P n

equations. This would lose the hyperbolic character in the P n equations, yet how this would actually effect the
physics is unknown. It is possible that this approach would only seriously affect the higher moments in the P n

equations without harming the lower moments (which are the most important moments).

4. The finite-volume discretization of the Pn equations for radiative transfer

We will now present a numerical method that we will use to explore how the P n equations behave on prob-
lems outside the scope of the theorem. To begin our spatial discretization, we average Eqs. (9) over a rectan-
gular spatial cell of size ðDx;DzÞ to get
3 Dis
by som
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Dx
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~I iþ1=2;j �~I i�1=2;j

� �
þ 1
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~I i;jþ1=2 �~I i;j�1=2

� �
þ r~I i;j
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acT 4

i;j

2
ffiffiffi
p
p dl0dm0 þ

Qi;j

2
ffiffiffi
p
p dl0dm0; ð40Þ

CvðT i;jÞ
oT i;j

ot
¼ �r acT 4

i;j � 2
ffiffiffi
p
p

I0
0;i;j

� �
: ð41Þ
The subscripts ði; jÞ denote the average value in cell i; j where ððiþ 1=2ÞDx; ðjþ 1=2ÞDzÞ is the center of cell ði; jÞ.
We make the approximation that the temperature is constant within each cell with the cell-average given by
T i;j ¼
1

DV

Z
Dv

dVT : ð42Þ
We use Eq. (42) to approximate the blackbody source:
T 4
i;j ¼

1

DV

Z
DV

dVT
� �4

ð43Þ

¼ 1

DV

Z
DV

dVT 4 þOðDV 2Þ: ð44Þ
Hence, approximating the temperature as constant in a cell contributes a second-order error. Such an ap-
proach has been used before in radiation diffusion methods [12]. In our method we solve for (and store)
T i;j and use it to compute T 4

i;j.
Eq. (40) needs a relation to determine the value at a cell boundary (the half-integer subscripts) in terms to

cell-average quantities. We do this by solving a Riemann problem at each interface to get [6]
Ax
~I iþ1=2;j ¼

1

2
Axð~Ix

iþ1;j þ~Ix
i;jÞ �

1

2
jAxjð~Ix

iþ1;j �~Ix
i;jÞ; ð45Þ

Az
~I i;jþ1=2 ¼

1

2
Azð~Iz

i;jþ1 þ~I z
i;jÞ �

1

2
jAzjð~Iz

i;jþ1 �~Iz
i;jÞ; ð46Þ
crete ordinates solutions can sometimes have negative values for the radiation energy density, but this is a numerical effect caused
e spatial discretizations [2], whereas the P n equations have these negatives in the spatially continuous limit.
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where
jAj ¼
X

k

~rkjkkj~lk; ð47Þ
with~rk and~lk being the kth right and left eigenvectors of A with corresponding eigenvalue kk. In Eqs. (45) and
(46) we have included a slope reconstruction term for the moments of the intensity
~Ix
i;j ¼~I i;j þ

Dx
2

mx
i;j; ð48Þ

~Iz
i;j ¼~I i;j þ

Dz
2

mz
i;j: ð49Þ
Here mi;j is a slope in the x or z direction computed by using the values in the neighboring cells and a minmod
limiter [13]. In the x direction for constant Dx this slope is calculated for each moment using the formula
mm;x
l;i;j ¼

minðjmþj; jm�jÞ; mþm� > 0;

0; otherwise;



ð50Þ
where
mþ ¼
1

Dx
ðIm

l;iþ1;j � Im
l;i;jÞ; m� ¼

1

Dx
ðIm

l;i;j � Im
l;i�1;jÞ: ð51Þ
The slope is computed in a similar fashion in the z direction. The formula for the cell edge values given in Eqs.
(45) and (46) is a combination of the average between the cells on either side of the interface (the näive way of
computing this value) minus some dissipation. The dissipation is of the form that it causes positive character-
istics to move information in the positive direction (e.g. from ~I i;j !~I iþ1=2;j) and negative characterisitics to
flow in the negative direction (e.g. from~I iþ1;j !~I iþ1=2;j). In this sense the discretization is upwinded: it respects
the underlying physics.

We note that the slope in each cell is constructed in a nonlinear fashion. This is necessary to avoid artificial
oscillations in the solution. The minmod limiter could be replaced by a smoother limiting function (such as
Van Leer’s harmonic mean limiter [14] as done by Brunner and Holloway [5,4]). However, it was shown by
McClarren [6] that using the minmod limiter is numerically advantageous for use in an implicit time-integra-
tion scheme because it is linear after the choice of stencil is made, and the choice of stencil can be predicted
beforehand by solving a simpler system.

The spatial discretization outlined above does not limit to a valid diffusion discretization when a mean-free
path is not resolved. As the spatial cells get optically thick the numerical dissipation has a constant magnitude.
In the limit of optically thick cells the leading-order ‘‘diffusion” equation in the limit of optically thick cells is a
discrete approximation to r2I0

0 ¼ 0. This result was shown by the authors for linear transport in Ref. [15] and
has been discussed by other researchers [16]. Hence, in using this discretization we must have the cell size
resolve a mean-free path. For the purposes of exploring when the P n equations give negative energy densities
we will be interested in studying optically thin systems, therefore, the performance of the method in the dif-
fusion limit is a separate issue. Nevertheless, we stress that for a purposes of a production radiative transfer
code robustness in the diffusion limit is vital.

The final piece of our discretization is time integration. We will use the backward Euler method for this.
With this method our fully discretized equations become
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: ð53Þ
Note these equations are nonlinear because of the slope reconstruction and the material energy terms.
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5. Boundary conditions

The simplest way to specify a boundary condition for our discretization is using ghost cells. In this imple-
mentation of a boundary condition, cells are placed outside the physical system in which we specify the value
of the moments of the intensity. Then our upwind discretization will automatically move only the appropriate
incoming information into the problem. Brunner and Holloway showed that the Mark boundary condition is
trivial to implement using ghost cells [5].

We will now show how this ghost cell framework can be used to specify a reflecting boundary. To begin we
will show what a reflecting boundary means in P n. This type of boundary condition causes the system bound-
ary to reflect particles impinging on the boundary interface. The particles hitting the boundary are to be
reflected with the same angle relative to the outward normal to the interface. The relation between hi and
hr, taking into account direction, is hr ¼ p� hi. For an incident particle with direction cXi , the angle between
the outward normal and Xi is given by cXi � n̂ ¼ cos hr and the reflected angle is then given bycXr � n̂ ¼ cosðp� hiÞ ¼ � cos hi. Therefore the intensity at the boundary is symmetric in the cosine of the polar
angle with respect to n̂
Iðcos hiÞ ¼ Ið� cos hiÞ for cos hi > 0: ð54Þ

The incident direction of a particle in terms of Cartesian coordinates ðx; zÞ is
bX0i ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� l2
p

cos /; lk̂
� �

: ð55Þ
The reflecting boundary condition for general inward normal is a linear combination of the boundary condi-
tions for each of the x and z directions. We will now derive the boundary conditions for each of these
directions.

5.1. The Z direction

If the outward normal, n̂, equals k̂ the boundary condition becomes
Iðl;/Þl>0 ¼ Ið�l;/Þ; ð56Þ
because cXi � n̂ ¼ l. The intensity at the boundary is an even function of l. Therefore, the moments of this
intensity are given by
Im
lboundary ¼

Z 2p

0

d/
Z 1

�1

dl�Y m
l Iðl;/Þ ¼

Im
l lþ m even;

0 lþ m odd:



ð57Þ
This is because the associated Legendre functions are odd in l for lþ m odd and they are even if lþ m is even.
To impose this boundary condition using ghost cells we will set the boundary flux to be
F m
l Boundary ¼

1

2
ðIm

l interior þ Im
l ghostÞ; ð58Þ
with
Im
l ghost ¼

Im
l interior lþ m even;

�Im
l interior lþ m odd:



ð59Þ
This type of ghost cell is implemented by modifying the stencil at the boundary to treat each boundary cell as
its own ghost cell. Note that Eq. (59) is equivalent to making our scheme a centered-difference (and not upwin-
ded) scheme at the boundary.
5.2. The X direction

For n̂ ¼ î, the incident angle is given by
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cos hi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
cos /: ð60Þ
This makes the outgoing (exiting the system) direction cos / > 0 or / 2 ½�p=2; p=2�, and the reflected direc-
tion cos / < 0 or / 2 ½p=2; 3p=2�. The boundary condition is
Iðl;/Þ/2½�p=2;p=2� ¼ Iðl; p� /Þ: ð61Þ
This condition requires the value on the boundary to be
Im
l boundary ¼

Im
l m even;

0 m odd:



ð62Þ
Eq. (62) results from the fact that the real part of the spherical harmonics are symmetric under a p radian
rotation for m even and are anti-symmetric under that rotation for m odd. These conditions are satisfied using
ghost cells by setting the flux at the boundary to
F m
l Boundary ¼

1

2
ðIm

l interior þ Im
l ghostÞ; ð63Þ
with
Im
l ghost ¼

Im
l interior m even;

�Im
l interior m odd:



ð64Þ
6. Implementation

Eqs. (52) and (53) form a system of nonlinear equations. This system could be solved using a Newton–Kry-
lov solver [17]. McClarren, Holloway, et al. showed how a similar system from linear transport could be effi-
ciently solved using a quasi-linear approach [6].

This approach, which we will extend here to the radiative transfer case, centers on the reality that the
streaming in the P n equations is linear; nonlinearities are added only to make the scheme non-oscillatory.
The nonlinearities added have discontinuous derivatives, and this type of nonlinearity is difficult for a Newton
method to handle. In the case of X-ray transport there are nonlinearities inherent in the physics of the system.
However, the streaming of photons is still a linear phenomenon and because of this fact we can use the quasi-
linear approach to simplify the nonlinearities added to the radiation streaming.

The quasi-linear approach for Eqs. (52) and (53) is given in Algorithm 1. This algorithm takes advantage of
the fact that the minmod limiter is linear once the choice of stencil is determined. In the first step, the system is
solved using a slope of zero to calculate the edge values in each cell (a first-order discretization). This gives us
information at the forward time step to determine how to reconstruct the slope (i.e. evaluate the cases in Eq.
(50)). Once we know how to reconstruct the slope in each cell, the streaming term is linear, and we use this
linear streaming term in step three. This approach could not be used with a limiter function that is not linear
once the choice of stencil is made. Using this two step approach on the streaming nonlinearity we have elim-
inated the discontinuous nonlinearity in the streaming discretization.

Algorithm 1. Quasi-linear algorithm for radiative transfer

1. Solve the system
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with mx
i;j ¼ mz

i;j ¼ 0, using Newton–Krylov.
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2. Determine the stencil for mx
i;j and mz

i;j using~I� to evaluate the cases in Eq. (50).
3. Solve the new system
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using Newton–Krylov and the stencil for mx
i;j and mz

i;j computed in step 2.

In thermal transport the equations in steps one and three of Algorithm 1 are nonlinear and those steps
would be linear only if the material equation and temperature source terms were linearized and the material
properties (r;Cv) were evaluated at the previous time step’s temperature. However, the temperature equation
is local and only feeds directly into the transport equations for its own cell. For this reason, we treat the mate-
rial temperature fully nonlinearly and do not lag the material temperatures. To do this we use a Newton–Kry-
lov solver in steps one and three of Algorithm 1. This nonlinear treatment could be modified to use a
linearization of the temperature equation. We have not explored linearizing the temperature terms.

McClarren, Holloway, and Brunner used a modified equation analysis [18] to demonstrate that extreme
points in the solution move at the same velocity to order Dx2 in both the high-resolution equations and the
first-order discretization [6]. This allows the first step to correctly locate the extreme points so that little error
is incurred in this three-step algorithm compared to doing a full nonlinear solve. The streaming operators are
the same for linear and thermal transport so their analysis holds for the thermal case.

The first solve uses the previous time-step’s result as the initial guess while the final solve takes~I� as the
guess. While the algorithm involves solving two nonlinear systems, the solution of the second system is made
much easier by the use of this initial guess. Our implementation uses the fact that a Newton–Krylov method
only needs to perform the action of a matrix times a vector.

The Newton–Krylov method that we use is the NOX package from the Trilinos solver library from Sandia
National Laboratories [19]. In NOX we use a matrix-free approximate Jacobian to avoid computing and stor-
ing the Jacobian for our system. We precondition the method with an ILU decomposition of the first-order
streaming operator.
7. Numerical results

7.1. One-dimensional problems

In one-dimensional problems we do not expect to see negative energy densities, however, we can use such
problems to look at how a P n solution converges to a transport solution and to examine how the numerical
method performs.

The first problem we will examine is the Su–Olson finite source problem [20], a problem of thermal trans-
port in normalized units with Cv / T 3. There is a unit source of radiation for jzj < 0:5; the source is turned on
at t ¼ 0 and left on until t ¼ 10. In our results r ¼ 1 and Cv ¼ 4aT 3. Using this problem we can examine how
the P n equations limit to transport. This is done by comparing different P n approximations with fine spatial
grids and time steps (Dx ¼ 0:015 and Dt ¼ 0:01) to the analytic transport solution found by Su and Olson
[20]. Figs. 1 and 2 show such comparisons. We see that P 1 does a poor job, yet P 3 performs noticeably better
than P 1. In Fig. 2 we can see the effect of the slow P 1 wave speed. P 1 only allows information to propagate at
c=

ffiffiffi
3
p

and on the logarithmic scale we can see that P 1, with only one wave speed, does not propagate infor-
mation at the correct speed. Some places of the solution have too much energy and others do not have enough.
A similar comparison was performed by Olson et al. for P 1 and different flux-limited diffusion, and variable-
Eddington factor methods [21]; there is also an analytic solution for the P 1 approximation on this problem [3].
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To quantify the convergence of the P n solution to transport we examined the L1 error between the P n numer-
ical solution and the analytic transport solution at ct ¼ 1; this error as function of P n order is shown in Fig. 3.
Between orders 3–9, the P n solution converges at first order in n to the transport solution.

7.2. Two-dimensional problems

In one-dimensional problems we showed that P n orders of seven and nine were sufficient to provide a
good approximation to the transport solution. Now we will look at some multi-material problems in two
dimensions to explore the behavior of the P n approximation and the consequences of our theorem.

Our first 2D test problem models radiative heating across a vacuum. This problem (see Fig. 4) has a central
block of material heated with a source, S, on the right hand side of the material energy equation Eq. (8). The
form of S that we use is
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Fig. 3. The L1 norm of the error between the P n solution and the transport solution at ct ¼ 1.

Fig. 4. The problem of a hot block heating cold blocks across a vacuum.
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S ¼ Cv
_T s; ð65Þ
where _T s has units of temperature per second. We do this so we can input the source as a temperature rate. The
cold block is not heated and its initial temperature is T ¼ 1 eV; at the beginning of the problem there is no
radiation field. The blocks are consubstantial with Cv ¼ 5� 1010 J=m3= keV and r ¼ 5000 m�1. The reflecting
boundaries quadruple the actual size of the problem – there are four of the initially cooler blocks.
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This problem is a good indicator of how both the P n approach and our method will work on realistic prob-
lems with materials heating each other across a vacuum. This problem uses a constant heat capacity, making
the temperature feedback nonlinear. This particular instance of the problem had the heated block’s material
source _T s given by
Fig. 5.
a Cart
_T s ¼

300 eV
ð0:5 nsÞ2 t 0 < t < 0:5 ns;

600 eV
0:5 ns

� 300 eV
ð0:5 nsÞ2 t 0:5 ns < t < 1 ns;

0 otherwise:

8>><>>: ð66Þ
_T s is defined this way because when the heat source S is integrated over time the total energy put into the prob-
lem is
Cv

Z 1

0

dt _T s ¼ 1:5� 1010 J for Dt < 0:5 ns: ð67Þ
In Fig. 5 the energy density from different orders of P n are shown. For this figure, the radiation temperature
was calculated using
Radiation temperature (eV) at 2 ns for the problem of heating across a vacuum using different P n orders. All problems were run on
esian mesh with Nx ¼ Nz. Black colors represent negative radiation temperature.
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T r ¼ signðEÞ
ffiffiffiffiffiffi
jEj
a

4

r
; ð68Þ
because the solutions had negative energy densities. Black in the figure represents negative radiation temper-
atures. This will give us an estimate of how well a given order can capture the shadow behind the cold blocks.
The P 1 solution has no shadow behind the cold block, showing that in P 1 photons non-physically wrap around
the cold block. P 3 shows this phenomenon as well but to a lesser extent; a shadow does exist in this solution.
Both the P 7 and the P 11 solutions have a shadow behind the cold block. With the P 7 solution there is some
radiation at temperature of 60–89 eV hitting the back of the block. In Fig. 5 all of the solutions with n > 1
also have a negative part to the radiation temperature in the shadow region. P 1 has no negatives because it
has no shadow. After they appear, the magnitude of these non-physical negatives goes down as n is increased.
The P 3 solution has a maximum negative of 63 eV, the P 7 maximum is about 40 eV, and the P 11 result has a
maximum of 31 eV. This trend corresponds to the magnitude of the negative energy density decaying as
Oðn�1Þ, where n is the order of the P n expansion. The separated positive and negative parts of the P 7 solution
are shown in Fig. 6.
Fig. 6. Comparison of the positive and negative parts of the radiation temperature (eV) for the P 7 solution at 2 ns.

ig. 7. Material temperatures (eV) at 10ns for P 5 and P 7. The colorscale has any temperature �1 eV or below colored black.
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The existence of negative solutions in multi-dimensional problems was predicted by the theorem in Section
3. The real importance of the negative radiation energy density is how it affects the material temperatures. If
the radiation did not cause the material temperature to go negative, then the non-physical nature of the neg-
atives would be more of a quirk than a serious drawback. At two nanoseconds the P 1 material temperature
remained positive; the maximum negative for was �10.86 eV for P 3, �11.6 eV for P 5, and �0.78 eV for P 7.
The P 11 solution material temperature remained positive. The material temperatures at a later time are shown
in Fig. 7. In this figure both P 7 and P 5 have regions of negative material temperature. The P 5 minimum tem-
perature is about �24 eV and the P 7 negative is near �2 eV.

Finally, it should be pointed out that in all of these figures (Figs. 5–7) implicit time stepping was heavily
utilized; every solution had the radiation travelling across the entire problem domain multiple times in a time
step with CFL numbers ranging from 60 to 150. To justify taking such large time steps we can look at the effect
of large time steps on the solution. A study was done on an instance of this problem where the hot block was
started at 300 eV rather than ramped up. This is a more difficult problem to simulate because of the large ini-
tial difference in radiation and material temperatures. Figs. 8 and 9 show the effect of time-step size on the P 7
Fig. 8. Effect of time-step size on the P 7 radiation energy density (J/m3) for the wire problem at 8.5 ns with Dx ¼ 1:6667� 10�4 m.

Fig. 9. Effect of time-step size on the P 7 material temperature (eV) at 8.5 ns with Dx ¼ 1:6667� 10�4 m.



Fig. 10. The ‘‘M” problem schematic: the maize colored regions are vacuum and the blue regions are dense material. (For interpretation of
the reference in colour in this figure legend, the reader is referred to see the web version of this article.)
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solution with N x ¼ Nz ¼ 60. These figures show the lineout along the diagonal from the center of the heated
block through the cold block and into the shadow region. In this problem the time scale of the material tem-
perature was as short as about 0.1 ns. These figures show that there is significant time-integration error in both
the radiation and material temperature fields when time steps are larger than this material temperature time
scale. This is the case for the radiation field even when the time scale of radiation propagation is greater than
100 times shorter than the time step.

Another problem we solved was a modification of the ‘‘M” problem [6]. A schematic of this problem is
shown in Fig. 10. We modified the original linear problem to give it temperature feedback: the walls of the
duct have Cv ¼ 5� 1010 J=m3=keV and r ¼ 5000 m�1. There is a 300 eV isotropic radiation source entering
the middle leg of the duct, and we use the real value of the speed of light. This nonlinear version of the problem
produces negative energy densities whereas the purely scattering problem in Ref. [6] did not. Fig. 11 shows the
effect of different P n approximations on the solution at an early time. The P 3 solution has too much energy
turning the corner of the duct; the P 7 solution shows less of this effect and displays a cone of radiation near
the top of the duct. In the P 3 solution there is a local maximum at the top of the middle leg of the duct. The P 7

solution has ‘‘waves” of energy in the outer legs of the duct. At this time, the magnitude of the negatives in the
P 3 solution was larger than that in the P 7 solution. However, a greater area of the solution was negative (for
both the energy density and material temperature) in the P 7 case.

The solution at a later time, 6 ns, is shown in Fig. 12. Here, we notice that the P 3 creates a ‘‘mushroom” of
photons near the top of the duct while the P 7 solution maintains a less rounded shape. In terms of material
heating, the P 3 solution has significant artificial heating of the outer legs of the duct. The P 7 solution shows
much less of this effect. This difference could be important in a problem where the heating of the wall affected
some other physical process (e.g. in a radiation-hydrodynamics simulation). Despite having less artificial heat-
ing in the outer legs of the duct, the P 7 solution has a larger region of artificial cooling.

Using this problem we can estimate the performance of our implicit method compared with an explicit
method. For the P 7 results of this problem, the CFL number is 150. The average number of GMRES iterations
in completing a time step is 1000 (approximately 600 in the first linear solve and 400 in the second). If we
assume an explicit method runs at a CFL number of 0.9 (just below the CFL limit), then it would take 167
explicit time steps to equal one implicit time step. To make the implicit method more efficient than the explicit
method would require an explicit time step to take the same amount of time as six GMRES iterations. We
would expect an explicit time step to take as long as several GMRES iterations. This expectation is based



Fig. 11. Radiation and material temperature (eV) at 0.9 ns for the thermal duct problem using different P n orders. All problems were run
on a Cartesian mesh with a time step of Dt ¼ 0:05 ns.
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on the fact that one GMRES iteration requires approximately O(M) operations where M is the number of
unknowns in a linear system. An explicit time step would require several iterations on the temperature feed-
back terms, each roughly equivalent to a GMRES iteration. Also, the process of slope limiting would be about
equivalent to a GMRES iteration. Given this back-of-the-envelope calculation the performance of the implicit
method is approximately equivalent to the performance of an explicit method. Numerical experiments show
that, for CFL numbers in the hundreds, the number of GMRES iterations required by the implicit method is
nearly constant as the CFL number changes. This result means that as the spatial grid is refined, the implicit
method will perform better than an explicit method.

To date we have not spent a great deal of effort on accelerating the implicit method. The topic of precon-
ditioning the linear systems in the two steps of the quasi-linear method is largely unexplored. If better precon-



Fig. 12. Radiation and material temperature (eV) at 6 ns for the thermal duct problem from P 3 and P 7.
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ditioners (either algebraic or physics-based such as a diffusion synthetic preconditioner) could reduce the num-
ber of GMRES iterations by a factor of 2 or 3 (a reasonable reduction), the implicit method would perform
markedly better than an explicit method.

8. Conclusions

We have demonstrated important aspects of the P n approximation for solving thermal radiative transfer
problems. In the free-streaming limit we proved that for any finite order of expansion the P n equations can
give solutions with a negative energy density. We also developed a numerical method to solve the P n equations
in order to examine how the approximation behaves in more complicated situations.
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For the Su–Olson benchmark problem we were able to study the convergence of P n to transport in the one-
dimensional case. Results showed that P 1 is a poor approximation for this problem, however, increasing the
order of approximation beyond P 3 demonstrated approximately linear convergence in n. The P 7 solution cap-
tured the transport solution well.

In two-dimensional problems our results had negative energy densities as predicted by our theorem. The
negative energy densities persisted even at long times. Increasing the order of the P n expansion decreased
the magnitude of the largest negative density, however, increasing n did in some cases lead to a larger area
of negative energy density in the solution. These results also showed that the material temperature can become
negative, a result outside the scope of the theorem.

The negative energy densities are not necessarily a mortal blow to the possibility of using the P n equations
for production purposes. There are ad hoc ways of dealing with quantities becoming unphysically negative in
large code projects. These can take the form of a temperature floor that does not allow the material temper-
ature to become negative. It has yet to be determined if such a floor would cause problems in a coupled sim-
ulation using the P n method. This option, while destroying energy conservation, would not affect the negative
radiation energy densities in vacuum regions.

While there cannot be a guarantee of positivity for solutions of the standard P n equations for a finite expan-
sion order n, for many problems there will be an order of expansion that reduces the negatives to a negligible
amount. Some important future work would be to understand how these negatives go away as the order of the
expansion is increased. For example, in the thermal duct problem will P 15 reduce the negatives to an accept-
able amount? At this point little is known theoretically about the magnitude of negative energy density values
in the P n equations as n is increased.

The numerical method we used in this study was an implicit upwind discretization of the P n equations.
Implicit time integration is important because the radiation propagation time scale is much shorter than
the material energy time scale. Our implicit approach solved the fully coupled, nonlinear radiation-material
energy equations. With the implicit method we were able to solve thermal radiation transport problems on
the time scale of the material energy equation rather than on a time scale limited by the CFL limit. These
results represent the first use of an implicit Riemann method for thermal radiation transport.

We successfully modified our previous quasi-linear approach to thermal transport problems. An implicit
method for a high-resolution spatial scheme requires the solution of a system of nonlinear equations at each
time step. We were able to reduce the computational cost of solving these equations by using a two-step
approach that is quasi-linear in the radiation transport terms. The quasi-linear approach was developed
out of the fact that the underlying P n equations are linear in the radiation streaming and that the nonlinearities
in streaming were added to get a high-resolution spatial scheme.

An approximate comparison of the performance of our implicit method and an explicit method shows that
our unaccelerated method is about as efficient as an explicit method for one of the problems we solved. We
expect that future investigations into the acceleration of our method will make the implicit method more effi-
cient. We also found that as the CFL number increases, the number of GMRES iterations remains stable. This
result means that as the mesh is refined, the implicit method will perform better than an explicit method.

While our and others’ results show that there is still important work to be done in the realms of numerics
and analysis of the P n equations, these methods still show promise. P n methods are at sizeable disadvantage to
Sn methods because the latter has such a large body of research regarding analysis and implementation.
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